Skip to content

vllm.model_executor.models.openpangu_mtp

OpenPanguMTP

Bases: Module, SupportsPP

Source code in vllm/model_executor/models/openpangu_mtp.py
@support_torch_compile
class OpenPanguMTP(nn.Module, SupportsPP):
    def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
        super().__init__()
        self.config = vllm_config.model_config.hf_config
        self.model = OpenPanguMultiTokenPredictor(
            vllm_config=vllm_config, prefix=maybe_prefix(prefix, "model")
        )

    def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
        return self.model.get_input_embeddings(input_ids)

    def forward(
        self,
        input_ids: torch.Tensor,
        positions: torch.Tensor,
        hidden_states: torch.Tensor,
        intermediate_tensors: IntermediateTensors | None = None,
        inputs_embeds: torch.Tensor | None = None,
        spec_step_idx: int = 0,
    ) -> torch.Tensor:
        hidden_states = self.model(
            input_ids,
            positions,
            hidden_states,
            inputs_embeds,
            spec_step_idx,
        )
        return hidden_states

    def compute_logits(
        self,
        hidden_states: torch.Tensor,
        spec_step_idx: int = 0,
    ) -> torch.Tensor | None:
        return self.model.compute_logits(hidden_states, spec_step_idx)

    def get_spec_layer(self, name):
        if (
            "layers" in name
            and hasattr(self.config, "num_nextn_predict_layers")
            and self.config.num_nextn_predict_layers > 0
        ):
            layer_idx = int(name.split("layers.")[-1].split(".")[0])
            mtp_idx = layer_idx - self.config.num_hidden_layers
            if mtp_idx >= 0 and mtp_idx < self.config.num_nextn_predict_layers:
                return layer_idx
        return None

    def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]) -> set[str]:
        stacked_params_mapping = [
            ("gate_up_proj", "gate_proj", 0),
            ("gate_up_proj", "up_proj", 1),
            ("fused_qkv_a_proj", "q_a_proj", 0),
            ("fused_qkv_a_proj", "kv_a_proj_with_mqa", 1),
        ]

        expert_params_mapping = FusedMoE.make_expert_params_mapping(
            ckpt_gate_proj_name="gate_proj",
            ckpt_down_proj_name="down_proj",
            ckpt_up_proj_name="up_proj",
            num_experts=self.config.n_routed_experts,
        )

        params_dict = dict(self.named_parameters())
        loaded_params: set[str] = set()
        for name, loaded_weight in weights:
            if "rotary_emb.inv_freq" in name:
                continue
            spec_layer = self.get_spec_layer(name)
            if spec_layer is None:
                continue

            name = self._rewrite_spec_layer_name(spec_layer, name)
            for param_name, weight_name, shard_id in stacked_params_mapping:
                # Skip non-stacked layers and experts (experts handled below).
                if weight_name not in name:
                    continue
                # We have mlp.experts[0].gate_proj in the checkpoint.
                # Since we handle the experts below in expert_params_mapping,
                # we need to skip here BEFORE we update the name, otherwise
                # name will be updated to mlp.experts[0].gate_up_proj, which
                # will then be updated below in expert_params_mapping
                # for mlp.experts[0].gate_gate_up_proj, which breaks load.
                if ("mlp.experts." in name) and name not in params_dict:
                    continue
                name_mapped = name.replace(weight_name, param_name)

                # QKV fusion is optional, fall back to normal
                # weight loading if it's not enabled
                if (
                    param_name == "fused_qkv_a_proj"
                ) and name_mapped not in params_dict:
                    continue
                else:
                    name = name_mapped

                # Skip loading extra bias for GPTQ models.
                if name.endswith(".bias") and name not in params_dict:
                    continue

                param = params_dict[name]
                weight_loader = param.weight_loader
                weight_loader(param, loaded_weight, shard_id)
                break
            else:
                for mapping in expert_params_mapping:
                    param_name, weight_name, expert_id, shard_id = mapping
                    if weight_name not in name:
                        continue
                    name = name.replace(weight_name, param_name)

                    param = params_dict[name]
                    weight_loader = param.weight_loader
                    weight_loader(
                        param,
                        loaded_weight,
                        name,
                        shard_id=shard_id,
                        expert_id=expert_id,
                    )
                    break
                else:
                    # Skip loading extra bias for GPTQ models.
                    if name.endswith(".bias") and name not in params_dict:
                        continue

                    if (
                        spec_layer != self.model.mtp_start_layer_idx
                        and ".layers" not in name
                    ):
                        continue

                    param = params_dict[name]
                    weight_loader = getattr(
                        param, "weight_loader", default_weight_loader
                    )
                    weight_loader(param, loaded_weight)
            loaded_params.add(name)
        return loaded_params

    def _rewrite_spec_layer_name(self, spec_layer: int, name: str) -> str:
        """
        Rewrite the weight name to match the format of the original model.
        Add .mtp_block for modules in transformer layer block for spec layer
        and rename shared layer weights to be top level.
        """
        spec_layer_weight_names = [
            "embed_tokens",
            "enorm",
            "hnorm",
            "eh_proj",
            "shared_head",
        ]
        shared_weight_names = ["embed_tokens"]
        spec_layer_weight = False
        shared_weight = False
        for weight_name in spec_layer_weight_names:
            if weight_name in name:
                spec_layer_weight = True
                if weight_name in shared_weight_names:
                    shared_weight = True
                break
        if not spec_layer_weight:
            # treat rest weights as weights for transformer layer block
            name = name.replace(
                f"model.layers.{spec_layer}.", f"model.layers.{spec_layer}.mtp_block."
            )
        elif shared_weight:
            # treat shared weights as top level weights
            name = name.replace(f"model.layers.{spec_layer}.", "model.")
        return name

config instance-attribute

config = hf_config

model instance-attribute

model = OpenPanguMultiTokenPredictor(
    vllm_config=vllm_config,
    prefix=maybe_prefix(prefix, "model"),
)

__init__

__init__(*, vllm_config: VllmConfig, prefix: str = '')
Source code in vllm/model_executor/models/openpangu_mtp.py
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
    super().__init__()
    self.config = vllm_config.model_config.hf_config
    self.model = OpenPanguMultiTokenPredictor(
        vllm_config=vllm_config, prefix=maybe_prefix(prefix, "model")
    )

_rewrite_spec_layer_name

_rewrite_spec_layer_name(spec_layer: int, name: str) -> str

Rewrite the weight name to match the format of the original model. Add .mtp_block for modules in transformer layer block for spec layer and rename shared layer weights to be top level.

Source code in vllm/model_executor/models/openpangu_mtp.py
def _rewrite_spec_layer_name(self, spec_layer: int, name: str) -> str:
    """
    Rewrite the weight name to match the format of the original model.
    Add .mtp_block for modules in transformer layer block for spec layer
    and rename shared layer weights to be top level.
    """
    spec_layer_weight_names = [
        "embed_tokens",
        "enorm",
        "hnorm",
        "eh_proj",
        "shared_head",
    ]
    shared_weight_names = ["embed_tokens"]
    spec_layer_weight = False
    shared_weight = False
    for weight_name in spec_layer_weight_names:
        if weight_name in name:
            spec_layer_weight = True
            if weight_name in shared_weight_names:
                shared_weight = True
            break
    if not spec_layer_weight:
        # treat rest weights as weights for transformer layer block
        name = name.replace(
            f"model.layers.{spec_layer}.", f"model.layers.{spec_layer}.mtp_block."
        )
    elif shared_weight:
        # treat shared weights as top level weights
        name = name.replace(f"model.layers.{spec_layer}.", "model.")
    return name

compute_logits

compute_logits(
    hidden_states: Tensor, spec_step_idx: int = 0
) -> Tensor | None
Source code in vllm/model_executor/models/openpangu_mtp.py
def compute_logits(
    self,
    hidden_states: torch.Tensor,
    spec_step_idx: int = 0,
) -> torch.Tensor | None:
    return self.model.compute_logits(hidden_states, spec_step_idx)

forward

forward(
    input_ids: Tensor,
    positions: Tensor,
    hidden_states: Tensor,
    intermediate_tensors: IntermediateTensors | None = None,
    inputs_embeds: Tensor | None = None,
    spec_step_idx: int = 0,
) -> Tensor
Source code in vllm/model_executor/models/openpangu_mtp.py
def forward(
    self,
    input_ids: torch.Tensor,
    positions: torch.Tensor,
    hidden_states: torch.Tensor,
    intermediate_tensors: IntermediateTensors | None = None,
    inputs_embeds: torch.Tensor | None = None,
    spec_step_idx: int = 0,
) -> torch.Tensor:
    hidden_states = self.model(
        input_ids,
        positions,
        hidden_states,
        inputs_embeds,
        spec_step_idx,
    )
    return hidden_states

get_input_embeddings

get_input_embeddings(input_ids: Tensor) -> Tensor
Source code in vllm/model_executor/models/openpangu_mtp.py
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
    return self.model.get_input_embeddings(input_ids)

get_spec_layer

get_spec_layer(name)
Source code in vllm/model_executor/models/openpangu_mtp.py
def get_spec_layer(self, name):
    if (
        "layers" in name
        and hasattr(self.config, "num_nextn_predict_layers")
        and self.config.num_nextn_predict_layers > 0
    ):
        layer_idx = int(name.split("layers.")[-1].split(".")[0])
        mtp_idx = layer_idx - self.config.num_hidden_layers
        if mtp_idx >= 0 and mtp_idx < self.config.num_nextn_predict_layers:
            return layer_idx
    return None

load_weights

load_weights(
    weights: Iterable[tuple[str, Tensor]],
) -> set[str]
Source code in vllm/model_executor/models/openpangu_mtp.py
def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]) -> set[str]:
    stacked_params_mapping = [
        ("gate_up_proj", "gate_proj", 0),
        ("gate_up_proj", "up_proj", 1),
        ("fused_qkv_a_proj", "q_a_proj", 0),
        ("fused_qkv_a_proj", "kv_a_proj_with_mqa", 1),
    ]

    expert_params_mapping = FusedMoE.make_expert_params_mapping(
        ckpt_gate_proj_name="gate_proj",
        ckpt_down_proj_name="down_proj",
        ckpt_up_proj_name="up_proj",
        num_experts=self.config.n_routed_experts,
    )

    params_dict = dict(self.named_parameters())
    loaded_params: set[str] = set()
    for name, loaded_weight in weights:
        if "rotary_emb.inv_freq" in name:
            continue
        spec_layer = self.get_spec_layer(name)
        if spec_layer is None:
            continue

        name = self._rewrite_spec_layer_name(spec_layer, name)
        for param_name, weight_name, shard_id in stacked_params_mapping:
            # Skip non-stacked layers and experts (experts handled below).
            if weight_name not in name:
                continue
            # We have mlp.experts[0].gate_proj in the checkpoint.
            # Since we handle the experts below in expert_params_mapping,
            # we need to skip here BEFORE we update the name, otherwise
            # name will be updated to mlp.experts[0].gate_up_proj, which
            # will then be updated below in expert_params_mapping
            # for mlp.experts[0].gate_gate_up_proj, which breaks load.
            if ("mlp.experts." in name) and name not in params_dict:
                continue
            name_mapped = name.replace(weight_name, param_name)

            # QKV fusion is optional, fall back to normal
            # weight loading if it's not enabled
            if (
                param_name == "fused_qkv_a_proj"
            ) and name_mapped not in params_dict:
                continue
            else:
                name = name_mapped

            # Skip loading extra bias for GPTQ models.
            if name.endswith(".bias") and name not in params_dict:
                continue

            param = params_dict[name]
            weight_loader = param.weight_loader
            weight_loader(param, loaded_weight, shard_id)
            break
        else:
            for mapping in expert_params_mapping:
                param_name, weight_name, expert_id, shard_id = mapping
                if weight_name not in name:
                    continue
                name = name.replace(weight_name, param_name)

                param = params_dict[name]
                weight_loader = param.weight_loader
                weight_loader(
                    param,
                    loaded_weight,
                    name,
                    shard_id=shard_id,
                    expert_id=expert_id,
                )
                break
            else:
                # Skip loading extra bias for GPTQ models.
                if name.endswith(".bias") and name not in params_dict:
                    continue

                if (
                    spec_layer != self.model.mtp_start_layer_idx
                    and ".layers" not in name
                ):
                    continue

                param = params_dict[name]
                weight_loader = getattr(
                    param, "weight_loader", default_weight_loader
                )
                weight_loader(param, loaded_weight)
        loaded_params.add(name)
    return loaded_params

OpenPanguMultiTokenPredictor

Bases: DeepSeekMultiTokenPredictor

Source code in vllm/model_executor/models/openpangu_mtp.py
class OpenPanguMultiTokenPredictor(DeepSeekMultiTokenPredictor):
    def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
        nn.Module.__init__(self)
        config = vllm_config.model_config.hf_config
        self.mtp_start_layer_idx = config.num_hidden_layers
        self.num_mtp_layers = config.num_nextn_predict_layers
        # to map the exact layer index from weights
        self.layers = torch.nn.ModuleDict(
            {
                str(idx): OpenPanguMultiTokenPredictorLayer(
                    vllm_config, f"{prefix}.layers.{idx}"
                )
                for idx in range(
                    self.mtp_start_layer_idx,
                    self.mtp_start_layer_idx + self.num_mtp_layers,
                )
            }
        )
        self.embed_tokens = VocabParallelEmbedding(
            config.vocab_size,
            config.hidden_size,
        )
        self.logits_processor = LogitsProcessor(config.vocab_size)

embed_tokens instance-attribute

embed_tokens = VocabParallelEmbedding(
    vocab_size, hidden_size
)

layers instance-attribute

layers = ModuleDict(
    {
        (str(idx)): (
            OpenPanguMultiTokenPredictorLayer(
                vllm_config, f"{prefix}.layers.{idx}"
            )
        )
        for idx in (
            range(
                mtp_start_layer_idx,
                mtp_start_layer_idx + num_mtp_layers,
            )
        )
    }
)

logits_processor instance-attribute

logits_processor = LogitsProcessor(vocab_size)

mtp_start_layer_idx instance-attribute

mtp_start_layer_idx = num_hidden_layers

num_mtp_layers instance-attribute

num_mtp_layers = num_nextn_predict_layers

__init__

__init__(*, vllm_config: VllmConfig, prefix: str = '')
Source code in vllm/model_executor/models/openpangu_mtp.py
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
    nn.Module.__init__(self)
    config = vllm_config.model_config.hf_config
    self.mtp_start_layer_idx = config.num_hidden_layers
    self.num_mtp_layers = config.num_nextn_predict_layers
    # to map the exact layer index from weights
    self.layers = torch.nn.ModuleDict(
        {
            str(idx): OpenPanguMultiTokenPredictorLayer(
                vllm_config, f"{prefix}.layers.{idx}"
            )
            for idx in range(
                self.mtp_start_layer_idx,
                self.mtp_start_layer_idx + self.num_mtp_layers,
            )
        }
    )
    self.embed_tokens = VocabParallelEmbedding(
        config.vocab_size,
        config.hidden_size,
    )
    self.logits_processor = LogitsProcessor(config.vocab_size)

OpenPanguMultiTokenPredictorLayer

Bases: DeepSeekMultiTokenPredictorLayer

Source code in vllm/model_executor/models/openpangu_mtp.py
class OpenPanguMultiTokenPredictorLayer(DeepSeekMultiTokenPredictorLayer):
    def __init__(self, vllm_config: VllmConfig, prefix: str) -> None:
        nn.Module.__init__(self)

        config = vllm_config.speculative_config.draft_model_config.hf_config
        self.config = config
        quant_config = vllm_config.quant_config

        self.enorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
        self.hnorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
        self.eh_proj = nn.Linear(config.hidden_size * 2, config.hidden_size, bias=False)
        self.shared_head = SharedHead(
            config=config,
            quant_config=quant_config,
            prefix=maybe_prefix(prefix, "shared_head"),
        )
        self.mtp_block = OpenPanguDecoderLayer(config, prefix, vllm_config)

config instance-attribute

config = config

eh_proj instance-attribute

eh_proj = Linear(hidden_size * 2, hidden_size, bias=False)

enorm instance-attribute

enorm = RMSNorm(hidden_size, eps=rms_norm_eps)

hnorm instance-attribute

hnorm = RMSNorm(hidden_size, eps=rms_norm_eps)

mtp_block instance-attribute

mtp_block = OpenPanguDecoderLayer(
    config, prefix, vllm_config
)

shared_head instance-attribute

shared_head = SharedHead(
    config=config,
    quant_config=quant_config,
    prefix=maybe_prefix(prefix, "shared_head"),
)

__init__

__init__(vllm_config: VllmConfig, prefix: str) -> None
Source code in vllm/model_executor/models/openpangu_mtp.py
def __init__(self, vllm_config: VllmConfig, prefix: str) -> None:
    nn.Module.__init__(self)

    config = vllm_config.speculative_config.draft_model_config.hf_config
    self.config = config
    quant_config = vllm_config.quant_config

    self.enorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
    self.hnorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
    self.eh_proj = nn.Linear(config.hidden_size * 2, config.hidden_size, bias=False)
    self.shared_head = SharedHead(
        config=config,
        quant_config=quant_config,
        prefix=maybe_prefix(prefix, "shared_head"),
    )
    self.mtp_block = OpenPanguDecoderLayer(config, prefix, vllm_config)